931. Minimum Falling Path Sum

Given a square array of integers A, we want the minimum sum of a falling path through A.

A falling path starts at any element in the first row, and chooses one element from each row. The next row’s choice must be in a column that is different from the previous row’s column by at most one.

给定一个整数A的正方形数组,我们想要通过A的下降路径的最小和。

下降路径从第一行中的任何元素开始,并从每行中选择一个元素。 下一行的选择必须位于与前一行的列不同的列中,最多一行。

Example 1:

Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation: 
The possible falling paths are:
  • [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
  • [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
  • [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]

The falling path with the smallest sum is [1,4,7], so the answer is 12.

Note:

  1. 1 <= A.length == A[0].length <= 100
  2. -100 <= A[i][j] <= 100

python实践

class Solution:
    def minFallingPathSum(self, A):
        # 思路: 每一行先排列,然后选择首元素,即是最小的falling path,
        # 此方法有问题
        total = 0
        for i in range(0, len(A)):
            A[i] = sorted(A[i])
            print(A[i])
            total += A[i][0]
        return total
# 此方法行不通        
  • 动态规划做法,参考

https://blog.csdn.net/fuxuemingzhu/article/details/83479398

#!/usr/bin/env python
# _*_ coding:utf-8 _*_

class Solution:
    def minFallingPathSum(self, A):
        # 思路: 每一行先排列,然后选择首元素,即是最小的falling path,
        # 此方法有问题
        total = 0
        for i in range(0, len(A)):
            A[i] = sorted(A[i])
            print(A[i])
            total += A[i][0]
        return total
    def minFallingPathSum2(self,A):
        M, N = len(A), len(A[0])
        dp = [[0]*(N+2) for _ in range(M)]
        for i in range(M):
            dp[i][0] = dp[i][-1] = float('inf')
            for j in range(1, N+1):
                dp[i][j] = A[i][j-1]
        for i in range(1, M):
            for j in range(1, N+1):
                dp[i][j] = A[i][j-1] + min(dp[i-1][j-1], dp[i-1][j], dp[i-1][j+1])
        # dp:[[inf, 17, 82, inf], [inf, 18, -27, inf]]
        return min(dp[-1])



if __name__ == '__main__':
    A = [[17,82],[1,-44]]
    t = Solution().minFallingPathSum2(A)
    print(t)

打赏一个呗

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦